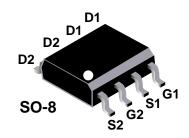
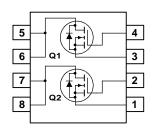
August 2001

FAIRCHILD SEMICONDUCTOR TM

FDS3601 100V Dual N-Channel PowerTrench[®] MOSFET


General Description


These N-Channel MOSFETs have been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

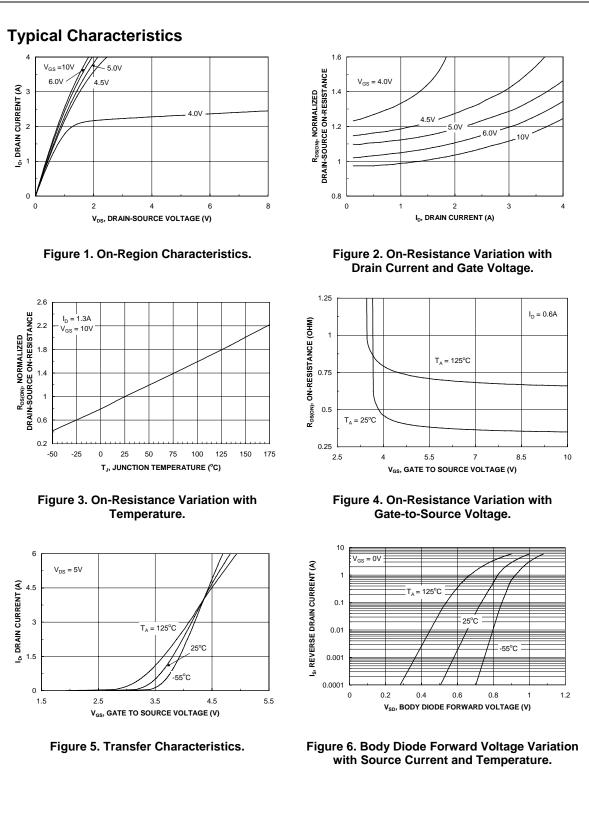
These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{_{\text{DS}(\text{ON})}}$ specifications. The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 1.3 A, 100 V. $R_{DS(ON)} = 480 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 530 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- Fast switching speed
- Low gate charge (3.7nC typical)
- + High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

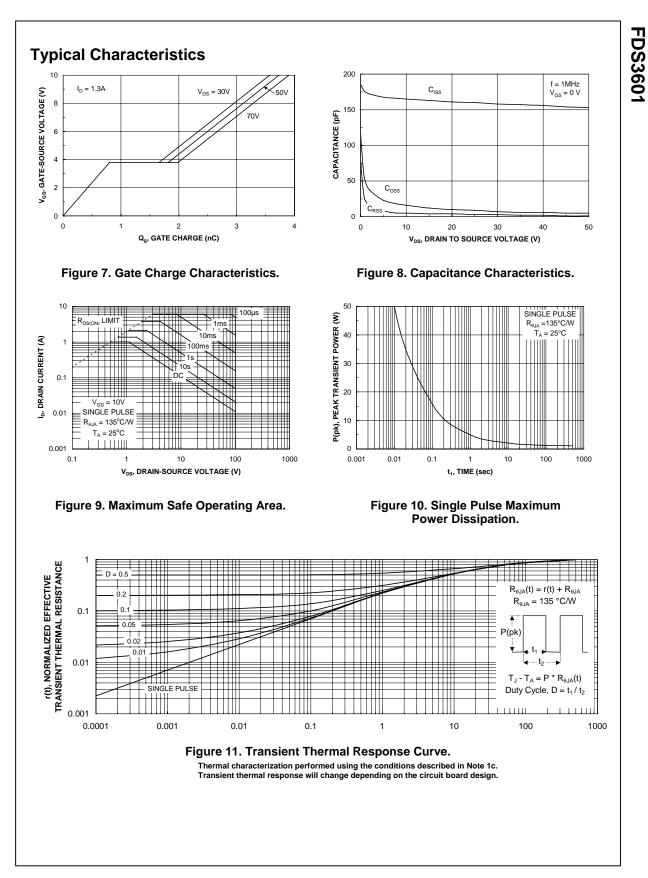
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		100	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current – Continuous	(Note 1a)	1.3	А
	– Pulsed		6	
P _D	Power Dissipation for Dual Operation		2	W
	Power Dissipation for Single Oper	ration (Note 1a)	1.6	
		(Note 1b)	1.0	
		(Note 1c)	0.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C
Therma	I Characteristics			
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case (Note 1)		40	°C/W
Packag	e Marking and Orderin	g Information		
Device I	Marking Device	Reel Size	Tape width	Quantity
FDS	3601 FDS3601	13"	12mm	2500 units


©2001 Fairchild Semiconductor Corporation

FDS3601

1.3 A	single Pulse, V _{DD} = 50 V, I _D = 1.3 A	in-Source Avalanche Ratings (Note
100 V °C 105 mV/°C 100 μA		
100 V °C 105 mV/°C 10 μΑ	J	Drain-Source Avalanche Energy
°C 105 mV/°C 10 μΑ		Drain-Source Avalanche Current
°C 105 mV/°C 10 μΑ		Characteristics
10 μA	$V_{GS} = 0 V, I_D = 250 \mu A$	s Drain–Source Breakdown Voltage
- P# 1	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$	Breakdown Voltage Temperature Coefficient
100 nA	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	Zero Gate Voltage Drain Current
	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$	Gate-Body Leakage, Forward
–100 nA	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$	Gate-Body Leakage, Reverse
<u> </u>	· · ·	Characteristics (Note 2)
2 2.6 4 V	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Gate Threshold Voltage
°C _5 mV/°C	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$	(th) Gate Threshold Voltage Temperature Coefficient
350 480 mΩ 376 530 530 5°C 664 955		n) Static Drain–Source On–Resistance
3 A	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$	On–State Drain Current
3.6 S	$V_{DS} = 5V$, $I_D = 1.3 A$	Forward Transconductance
	· · · · · ·	amic Characteristics
153 pF	$V_{DS} = 50 V$, $V_{GS} = 0 V$,	Input Capacitance
5 pF	f = 1.0 MHz	Output Capacitance
1 pF		Reverse Transfer Capacitance
	· · · · · ·	tching Characteristics (Note 2)
8 16 ns	$V_{DD} = 50 V$, $I_D = 1 A$,	Turn–On Delay Time
4 8 ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	Turn–On Rise Time
11 20 ns	1	Turn–Off Delay Time
6 12 ns	1 1	Turn–Off Fall Time
3.7 5 nC	$V_{DS} = 50 V$, $I_D = 1.3 A$.	Total Gate Charge
0.8 nC	V _{GS} = 10 V	
1 nC	1 1	Gate–Drain Charge
	and Maximum Ratings	in-Source Diode Characteristics
1.3 A		
	$V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A} (\text{Note 2})$	Drain–Source Diode Forward
11 20 6 12 3.7 5 0.8 1 1 1.3	$V_{DS} = 50 \text{ V}, I_D = 1.3 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Ratings Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A} (\text{Note 2})$ al resistance where the case thermal reference is	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge in-Source Diode Characteristics Maximum Continuous Drain-Source


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

6699

FDS3601

FDS3601 Rev C(W)

FDS3601 Rev C(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		
Rev. H				